Answer:
V = 4/3 * 3.1416 * (37x10-10)3
V = 2.12x10-25 cm3
d = m/V
d = 1.67x10-24 / 2.12x10-25 = 7.87 g/cm3
The difference in temperature, let's convert F to ºC:
ºC = -80-32/1.8 = -62.22 ºC
dT = -92.6 + 62.2 = -30.4 ºC
Answer:

Explanation:
The molar mass of uranium-235 is 235 g/mol. So one mole of uranium-235 has a mass of 235 g. Put differently 6.022×10^23 atoms of uranium-235 have a mass of 235 g. Knowing that, how can we use that to find the mass of one atom?
mass of one atom = 
Explanation:
Scientifically speaking, metals are naturally occurring chemical elements that are typically hard, lustrous, and good conductors of both heat and electricity. Examples include iron, gold, silver, copper, zinc, nickel, etc., but also elements we don't normally think of as metals.
Answer:
Volume will goes to increase.
Explanation:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
So when the temperature goes to increase the volume of gas also increase. Higher temperature increase the kinetic energy and molecules move randomly every where in given space so volume increase.
Now we will put the suppose values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 4.5 L × 348 K / 298 k
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Hence prove that volume increase by increasing the temperature.