i guess its e) Mn (VII)
if it was wrong pls let me knw
Answer:
i say B
Explanation:
tell me if it is the right one
1. Weird things like the one described above do not happen on a ramdom basis becuause molecules usually move within any enclosure in a ramdom manner. Thus, it is not possible for some types of particles to aggregate in one point while other types of molecule aggreagate in another point. Based on the kinetic energy that is available for each particle, each particle will move random
through the available space, colliding with one another and with the wall of container.
2. It will be a difficult thing to live in a Maxwell' demon world because, things will happen unpredictably and one will never know what to expect next because anything can happen at anytime. For instance, if one is drinking a glass of water, some of the particles of the water may just decide to aggregate to one part of the cup and start boiling. So, for someone who is taking a glass of water, the water may start boiling right inside his mouth when he is drinking, that will be a bad experience. When one is driving a car, the petrol particles may just decide to freeze up when one is busy speeding on the highway; that can cause a very serious accident. Thus, a world where the Maxwell law operates will be a chaotic world.
I would say that the answer is Sn.
C-is a non-metal
Ge-is a metalliod (consists both non-metal and metal)
Si -is a metalloid
Sn- is a pure metal
Answer: Colligative properties are those properties of solutions that are dependent on the concentration of the solutes in the solution.
Colligative properties has to do with solutions, that is, solutes that are dissolved in solvents. Examples of colligative properties are: freezing point depression, vapour pressure lowering, boiling point elevation and osmotic pressure. Colligative properties do not depend on the identity of the solutes, this implies that the effect of colligative properties are uniform across all solutions. For example, the freezing point depression of any solution will depend on the concentration of solutes that are dissolve in solution.