Answer:
[H+] = 4.365x10⁻¹¹
Explanation:
The pH is a measurement widely used in chemistry. Is used in quality control to determine if a product is good for human or pet consumption. The equation to obtain the pH is:
pH = -log [H+]
To solve [H+]:
10^pH = -[H+]
10^-pH = -[H+]
In the problem:
10^-10.36 = -[H+]
<h3>[H+] = 4.365x10⁻¹¹</h3>
Number of moles of CO2 =
Mass /Ar
= 50.2 / (12 + 32)
1.14 mols
For every 1 mol of gas, there will be
24000 cm^3 of gas
Vol. = 1.14 x 24 dm^3
= 27.36 dm^3
Answer:
The answer is "29.081"
Explanation:
when the empty 2.00 L container of 1000 kg, a sample of HI (9.30 x 10-3 mol) has also been placed.




Its density of I 2 was 6.29x10-4 M if the balance had been obtained, then we have to get the intensity of equilibrium then:

It is defined that:


Now, we calculate the position:
For the reaction
, you can calculate the value of Kc at 1000 K.
data expression for Kc


calculating the reverse reaction



I believe this topic is quantitative chemistry but I need the equation to work this out sorry
Answer:
A . 2 O₃(g) + 2 NO ⇒ 2 O₂ (g) + 2 NO₂(g)
B . Yes
C. O and NO₃
Explanation:
A. The overall reaction is obtained by adding the individual steps in the reaction mechanism where we will get the reactants and product and the intermediates will cancel.
Thus, adding 1+ 2 +3 we get
2 O₃(g) + 2 NO ⇒ 2 O₂ (g) + 2 NO₂(g)
B. The reaction intermediates are those that are produced from the initial and/or subsequent steps and are consumed later on in the reaction mechanism, but are neither reactants nor products, they just participate.
From this definition it follows that O(g) and NO₃ are reaction intermediates.
C. O and NO₃