Answer: 36 meters.
Equation to find distance:
Speed x time
Answer:

Explanation:
<u>Average Acceleration
</u>
Acceleration is a physical magnitude defined as the change of velocity over time. When we have experimental data, we can compute it by calculating the slope of the line in velocity vs time graph.
Note: <em>We cannot see if the time axis is numbered in increments of 1 second, and we'll assume that.
</em>
When
, the graph shows a value of
When
, the object is at rest, 
We compute the average acceleration as




We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
Answer:
Answer is the formation of multiple images of the same object .
Explanation:
I hope it's helpful!