Answer:
x-ints: (2,0) & (4,0)
y-int: (0,-8)
vertex: (3,1) *highest point of the graph
line of symmetry: x = 3 *x-value in the middle of x-ints
a value is -# *if parabola points done it's negative, if it points up it's positive
The rest of the question is the attached figure.
============================================
Δ AYW a right triangle at Y ⇒⇒⇒ ∴ WA² = AY² + YW²
And AY = YB ⇒⇒⇒ ∴ WA² = YB² + YW² → (1)
Δ BYW a right triangle at Y ⇒⇒⇒ ∴ WB² = BY² + YW² → (2)
From (1) , (2) ⇒⇒⇒ ∴ WA = WB →→ (3)
Δ CXW a right triangle at Y ⇒⇒⇒ ∴ WC² = CX² + XW²
And CX = XB ⇒⇒⇒ ∴ WC² = XB² + XW² → (4)
Δ BXW a right triangle at Y ⇒⇒⇒ ∴ WB² = XB² + XW² → (5)
From (4) , (5) ⇒⇒⇒ ∴ WC = WB →→ (6)
From (3) , (6)
WA = WB = WC
given ⇒⇒⇒ WA = 5x – 8 and WC = 3x + 2
∴ <span> 5x – 8 = 3x + 2</span>
Solve for x ⇒⇒⇒ ∴ x = 5
∴ WB = WA = WC = 3*5 + 2 = 17
The correct answer is option D. WB = 17
7(a - 10) = 13 - 2(2a + 3)
7a - 70 = 13 - 4a - 6 = 7 - 4a
7a + 4a = 7 + 70
11a = 77
a = 77/11 = 7
a = 7.
They give you the y-value in an (x, y) ordered pair. So you plug in 8 where the y is and solve.
- 4x - 8 = 24
Add 8 to each side
- 4x = 32
Divide each side by - 4
x = - 8
So your ordered pair is (- 8, 8).