So simply it to 120m/m for 120 minutes. So then you multiply 120x120 and that equals 14,400
We know V=IR (Ohm's law).
We are given R=180Ω and I=0.1A, then V=(0.1AΩ)(180Ω). Therefore
V=18V
<h3>Answer</h3>
1104 km/hour
<h3>Explanation</h3>
Distance between Dallas Texas to New York = 2760 km
Time the plane took from Dallas to New York = 2 hours
Time the plane took from New York back to Dallas = 2.5 hours
Formula to use
<h3>distance = speed x time </h3>
Speed the plane took from Dallas to New York
2760 = 2 x speed
speed = 2760 / 2
= 1380 km/hour
Speed the plane took from New York to Dallas (ROUND TRIP)
2760 = 2.5 x speed
speed = 2760 / 2.5
= 1104 km/hour
<span>4.5 m/s
This is an exercise in centripetal force. The formula is
F = mv^2/r
where
m = mass
v = velocity
r = radius
Now to add a little extra twist to the fun, we're swinging in a vertical plane so gravity comes into effect. At the bottom of the swing, the force experienced is the F above plus the acceleration due to gravity, and at the top of the swing, the force experienced is the F above minus the acceleration due to gravity. I will assume you're capable of changing the velocity of the ball quickly so you don't break the string at the bottom of the loop.
Let's determine the force we get from gravity.
0.34 kg * 9.8 m/s^2 = 3.332 kg m/s^2 = 3.332 N
Since we're getting some help from gravity, the force that will break the string is 9.9 N + 3.332 N = 13.232 N
Plug known values into formula.
F = mv^2/r
13.232 kg m/s^2 = 0.34 kg V^2 / 0.52 m
6.88064 kg m^2/s^2 = 0.34 kg V^2
20.23717647 m^2/s^2 = V^2
4.498574938 m/s = V
Rounding to 2 significant figures gives 4.5 m/s
The actual obtainable velocity is likely to be much lower. You may handle 13.232 N at the top of the swing where gravity is helping to keep you from breaking the string, but at the bottom of the swing, you can only handle 6.568 N where gravity is working against you, making the string easier to break.</span>
Valence electrons are required for certain bonding processes. Without them you cannot bond with certain elements. For example, carbon bonds really well with carbon because it has the same amount of valence electrons. However carbon would not bond well with uranium due to the massive differences in valence electrons. Hope this helps!