To solve the exercise it is necessary to take into account the concepts of wavelength as a function of speed.
From the definition we know that the wavelength is described under the equation,

Where,
c = Speed of light (vacuum)
f = frequency
Our values are,


Replacing we have,



<em>Therefore the wavelength of this wave is
</em>
Answer:
spring compressed is 0.724 m
Explanation:
given data
mass = 1.80 kg
spring constant k = 2 × 10² N/m
initial height = 2.25 m
solution
we know from conservation of energy is
mg(h+x) = 0.5 × k × x² ...................1
here x is compression in spring
so put here value in equation 1 we get
1.8 × 9.8 × (2.25+x) = 0.5 × 2× 10² × x²
solve it we get
x = 0.724344
so spring compressed is 0.724 m
Answer:
F₄ = 29.819 N
Explanation:
Given
F₁ = (- 25*Cos 50° i + 25*Sin 50° j + 0 k) N
F₂ = (12*Cos 50° i + 12*Sin 50° j + 0 k) N
F₃ = (0 i + 0 j + 4 k) N
Then we have
F₁ + F₂ + F₃ + F₄ = 0
⇒ F₄ = - (F₁ + F₂ + F₃)
⇒ F₄ = - ((- 25*Cos 50° i + 25*Sin 50° j) N + (12*Cos 50° i + 12*Sin 50° j) N + (4 k) N) = (13*Cos 50° i - 37*Sin 50° j - 4 k) N
The magnitude of the force will be
F₄ = √((13*Cos 50°)² + (- 37*Sin 50°)² + (- 4)²) N = 29.819 N