Answer:
1.06 m
Explanation:
Since the charge is at the centre of two concentric spheres, we use the formula for electric potential due to a point charge. V = kq/r. Let r₁ be the radius of the sphere with potential, V₁ = 200 V and r₂ be the radius of the sphere with potential, V₂ = 82.0 V. From V = kq/r, r = kq/V. So that r₁ = kq/V₁ and r₂ = kq/V₂. The magnitude of the difference r₁ - r₂ is the distance between the two surfaces. q the charge equals 1.63 × 10⁻⁸ C
r₂ - r₁ = kq/V₂ - kq/V₁ = kq(1/V₂ - 1/V₁) = 1.63 × 10⁻⁸ × 9 × 10⁹ (1/82 -1/200) m = 1.63 × 10⁻⁸ × 9 × 10⁹ (0.0122 - 0.005) = 1.63 × 10⁻⁸ × 9 × 10⁹(0.0072) m = 1.06 m
The distance between them is 1.06 m
1) Length of the wire.
2) Thickness of the wire.
3) Temperature.
4) Type of metal.
Hope this helps!
-Payshence
Answer:
B. 59 kg
Explanation:
From the graph you notice that a linear relation in indicated by the line joining the points such that the points on the line represent the data that show a correct relationship in the experiment.
This means that the point outside the line has an error .
This point is the value 59 kg that does not align with other values which are included in the graph.
Newwton's law of inertia states that an object will not be able to move unless force is applied to it