<u>Answer:</u> The solubility of oxygen at 682 torr is 
<u>Explanation:</u>
To calculate the molar solubility, we use the equation given by Henry's law, which is:

Or,

where,
are the initial concentration and partial pressure of oxygen gas
are the final concentration and partial pressure of oxygen gas
We are given:
Conversion factor used: 1 atm = 760 torr

Putting values in above equation, we get:

Hence, the solubility of oxygen gas at 628 torr is 
Answer:
36.55kJ/mol
Explanation:
The heat of solution is the change in heat when the KNO3 dissolves in water:
KNO3(aq) → K+(aq) + NO3-(aq)
As the temperature decreases, the reaction is endothermic and the molar heat of solution is positive.
To solve the molar heat we need to find the moles of KNO3 dissolved and the change in heat as follows:
<em>Moles KNO3 -Molar mass: 101.1032g/mol-</em>
10.6g * (1mol/101.1032g) = 0.1048 moles KNO3
<em>Change in heat:</em>
q = m*S*ΔT
<em>Where q is heat in J,</em>
<em>m is the mass of the solution: 10.6g + 251.0g = 261.6g</em>
S is specififc heat of solution: 4.184J/g°C -Assuming is the same than pure water-
And ΔT is change in temperature: 25°C - 21.5°C = 3.5°C
q = 261.6g*4.184J/g°C*3.5°C
q = 3830.87J
<em>Molar heat of solution:</em>
3830.87J/0.1048 moles KNO3 =
36554J/mol =
<h3>36.55kJ/mol</h3>
<em />
Answer:
The answer is A. solvent, solute, solution.
Explanation:
Answer:
105.9888 g/mol
Explanation:
The molar mass of sodium carbonate is 105.9888 g/mol (grams per mole)