Answer:
5. gains two electrons.
Explanation:
In order to determine the most stable monoatomic ion of oxygen, we need to consider the octet rule: atoms will gain, lose or share electrons to complete their valence shell with 8 electrons.
Oxygen is in the Group 16 in the Periodic Table, so it has 6 valence electrons. Therefore, it will gain two electrons to have the electron configuration of the closest noble gas.
The spring constant determines how far the spring will stretch for a given applied force: <span>F=kx→k=<span>Fx</span></span><span>. If we place the same mass on the two springs, which means we have placed the same force on them, the one that stretches </span>least<span> has the largest spring constant.
Hope this helps!
</span>
If you would draw the Lewis structures of these atoms, you would see that A has 2 electron pairs and 2 lone electrons (that can bond). For B you’d see that you only have 1 electron that can form a bond. This means that 1 atom of A (2 lone electrons) can bond with 2 atoms of B. To know the kind of bond you have to know wether or not there will be a ‘donation’ of an electron from one atom to another. This happens when the number of electrons on one atoms is equal to the number of electrons another atom needs to reach the noble gas structure. As you can see, this is not the case here. This means that you get an AB2 structure with covalent character.
According to Charles' Law the volume of an ideal gas is directly proportional to its absolute temperature in Kelvin keeping the pressure constant.
V∝ T, P is constant
where V, T and P are volume, temperature and pressure
= 
where V₁, T₁, V₂ and T₂ are initial volume, initial temperature, final volume and final temperature.
Answer:
all of these are properties of metalloids