The answer you are looking for is True
Answer:
3.8 x 10²⁴molecules
Explanation:
Given parameters:
Number of moles = 6.32moles
Unknown:
Number of molecules = ?
Solution:
The number of moles can be used to derive the number of molecules found within a substance.
Now,
1 mole of substance contains 6.02 x 10²³ molecules
6.32 mole of PBr₃ will contain 6.32 x 6.02 x 10²³ = 3.8 x 10²⁴molecules
The Answer you are looking for is true
<u>Answer:</u> The molecular weight of protein is 
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

or,

where,
= Osmotic pressure of the solution = 0.0861 atm
i = Van't hoff factor = 1 (for non-electrolytes)
= mass of protein = 400 mg = 0.4 g (Conversion factor: 1 g = 1000 mg)
= molar mass of protein = ?
= Volume of solution = 5.00 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
Putting values in above equation, we get:

Hence, the molecular weight of protein is 
<span>To answer this question, you need to change the sodium phosphate unit into mol and doing the reaction. Sodium phosphate or Na3PO4 molecular weight is 163.94 or 164 rounded up. Then the amount should be: 492g/ (164g/mol)= 3 mol
For every 1 mol of </span>Na3PO4 there are 4 mol of oxygen element. To made 1 mol of O2 molecule, you will need 2 mol oxygen element. Then the amount of oxygen should be: 4/2 * 3 mol= 6 mol * 6.02 * 10^23= 36.12 * 10*23= 3.61 * 10^24