.2 per treat 2 cents per treat
[1] y = -x + 5
3x + 3•(-x +5) = 10
0 = -5 => NO solution
Answer:
How many general admission tickets were purchased? __<u>136</u>__
How many upper reserved tickets we purchased? _<u>300</u>_
Step-by-step explanation:
Let the number of general tickets = g.
Let the number of reserved tickets = r.
6.5g + 8r = 3284
g + r = 436
6.5g + 8r = 3284
(+) -8g + -8r = -3488
--------------------------------
-1.5g = -204
g = 136
g + r = 436
136 + r = 436
r = 300
Answer:
How many general admission tickets were purchased? __<u>136</u>__
How many upper reserved tickets we purchased? _<u>300</u>_
Answer:
184 cm²
Step-by-step explanation:
Surface area of the rectangular box is expressed as S = 2(LW+LH+WH)
L is the length of the box = 90 cm
W is the width of the box = 50 cm
H is the height of the box= 90 cm
If there are error of at most 0.2 cm in each measurement, then the total surface area using differential estimate will be expressed as shown;
S = 2{(LdW+WdL) + (LdH+HdL) + (WdH+HdW)
Note that dL = dW = dH = 0.2 cm
Substituting the given values into the formula to estimate the maximum error in calculating the surface area of the box
S = 2{(90(0.2)+50(0.2)) + (90(0.2)+90(0.2)) + (50(0.2)+90(0.2))
S = 2{18+10+18+18+10+18}
S = 2(92)
S = 184 cm²
Hence, the maximum error in calculating the surface area of the box is 184cm²
In this equation we start by filling in the N with "1" then"2" then "3" and so on
3n+4=
3(1)+4=7
3(2)+4=10
3(3)+4=13
3(4)+4=16