Both move with constant speed
Initial velocity of the object: 5 m/s
Explanation:
The figure in the problem is missing: find it in attachment.
The graph in the figure represents the velocity of an object (v) versus the time passed (t).
Here we are asked to find the initial velocity of the object.
This means that we have to find the velocity of the object when the time is zero, so when
t = 0
By looking at the corresponding value on the y-axis (velocity), we see that when t = 0, then
v = 5 m/s
Therefore, the initial velocity of the object is 5 m/s.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
h = 40.37 m
Explanation:
We will apply the law of conservation of energy to the skier in this case, as follows:

where,
m = mass of skier = 77 kg
g = acceleration due to gravity = 9.81 m/s²
vf = final speed = 30 m/s
vi = initial speed = 2 m/s
W_friction = Work done by friction and air resistance = 4000 J
Therefore,
![(77\ kg)(9.81\ m/s^2)h = \frac{1}{2}(77\ kg)[(30\ m/s)^2-(2\ m/s)^2] - 4000\ J\\\\h = \frac{34496\ J - 4000\ J}{755.37\ N}\\\\](https://tex.z-dn.net/?f=%2877%5C%20kg%29%289.81%5C%20m%2Fs%5E2%29h%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2877%5C%20kg%29%5B%2830%5C%20m%2Fs%29%5E2-%282%5C%20m%2Fs%29%5E2%5D%20-%204000%5C%20J%5C%5C%5C%5Ch%20%3D%20%5Cfrac%7B34496%5C%20J%20-%204000%5C%20J%7D%7B755.37%5C%20N%7D%5C%5C%5C%5C)
<u>h = 40.37 m</u>