Answer:
A- The ball has both kinetic and potential energy,
Explanation:
kinetic energy by virtue of its motion.
potential energy by virtue of its position. (It could roll off the edge of the tabel and convert gravity potential energy to kinetic energy)
The orbital period increases if the orbital distance is increased.
Answer:
B. They show the pattern made by the magnetic field lines around the
magnets
Explanation:
Using iron fillings, the pattern of the magnetic field lines around a bar magnet can be known.
Magnetic field lines are the line of force around a bar magnet.
- These iron fillings will trace the pattern of the magnetic field around the magnet.
- The domains of the iron fillings begins to align and orient with that of the prevailing magnetic field around.
- Those areas with the strongest force will attract more fillings and those far away will attract lesser fillings.
Answer:
W = 0
Explanation:
When an electron moves perpendicular to a uniform B-field. If the field is in a vacuum, the magnetic field B is the dominant factor determining the motion. Since the magnetic force F is perpendicular to the direction of travel, an electron follows a curved path in a magnetic field. The electron continues to follow this curved path until it forms a complete circle. Another way to look at this is that the magnetic force F is always perpendicular to velocity v, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
W = F*d*Cos ∅ = F*d*Cos 90° = 0 where d is the displacement.
The pic shown can help to understand the explanation.