It’s Abe beacuse it grew 7 inch week and 4 tall 2 week.
Answer:
Area of Trapezoid is 39 unit²
Step-by-step explanation:
Given as :
For A Trapezoid
The measure of base side 1 =
= 10 unit
The measure of base side 2 =
= 16 unit
The height of the Trapezoid = h = 3 unit
Let The Area of Trapezoid = A square unit
<u>Now, From Formula</u>
Area of Trapezoid =
× (sum of opposite base) × height
I.e A =
× (
+
) × h
Or, A =
× (10 unit + 16 unit) × 3 unit
Or, A =
× (26 unit) × 3 unit
Or, A =
× 78 unit²
Or, A =
unit²
I.e A = 39 unit²
So, The Area of Trapezoid = A = 39 unit²
Hence, The Area of Trapezoid is 39 unit² . Answer
Answer: The equation of the parabola is
.
Explanation:
It is given that the focus of the parabola is (-5,-5) and the directrix is y=7.
The standard form of the parabola is,

Where y=k-p is directrix and (h,k+p) is the focus.
Since focus is given,

On comparing,

.... (1)
The directrix is y=7.
.... (2)
Add equation (1) and (2),


Put this value in (1).

Put p= -6, h= -5 and k=1 in the standard form of the parabola.


Therefore, the equation of parabola is
.
Answer:
Step-by-step explanation:
a)
Confidence interval in less than symbol expressed as

Where
is sample mean and
is margin of error.

b)
The given t interval is 
That is
and
Solve these two equation by adding together.
Solve this value of \bar{x} in equation
and solve for

Best point estimate of 
Best point estimate of margin of error = 0.193
c)
Since sample size = 100 which is sufficiently large (Greater than 30) , it is no need to confirm that
sample data appear to be form a population with normal distribution.
A
Step-by-step explanation:First, subtract
2
π
r
2
from each side of the equation to isolate the
h
term:
S
−
2
π
r
2
=
2
π
r
h
+
2
π
r
2
−
2
π
r
2
S
−
2
π
r
2
=
2
π
r
h
+
0
S
−
2
π
r
2
=
2
π
r
h
Now, divide each side of the equation by
2
π
r
to solve for
h
:
S
−
2
π
r
2
2
π
r
=
2
π
r
h
2
π
r
S
−
2
π
r
2
2
π
r
=
2
π
r
h
2
π
r
S
−
2
π
r
2
2
π
r
=
h
h
=
S
−
2
π
r
2
2
π
r
Or
h
=
S
2
π
r
−
2
π
r
2
2
π
r
h
=
S
2
π
r
−
2
π
r
2
2
π
r
h
=
S
2
π
r
−
r
2
r
h
=
S
2
π
r
−
r