The ratio of H⁺ ions to OH⁻ ions at a pH = 2 is 10¹⁰
<h3>Further explanation</h3>
Given
ph = 2
Required
The concentration of H⁺ and OH⁻ ions
Solution
- The concentration of H⁺ ions
pH=-log[H⁺]
2=-log[H⁺]
[H⁺]=10⁻²
- The concentration of OH⁻ ions
pH+pOH=14
pOH=14-2
pOH=12
pOH=-log[OH⁻]
12=-log[OH⁻]
[OH⁻]=10⁻¹²
- The ratio of H⁺ ions to OH⁻ ions at a pH = 2

Answer:
I think its B im not sure
but i hope this helps
It would be 1 or 2 because if the number is higher than 5 you need to round up , if its lower than 5 you need to round down.
Answer:
1. When observing a positive test for the jones reagent and negative for the Lucas test, it indicates that it is in the presence of a primary alcohol.
Jones reagent behaves like a strong oxidant, where it transforms the primary alcohols into carboxylic acids and the secondary alcohols into ketones. Tertiary alcohols do not react.
With the Lucas test, tertiary alcohols react immediately producing turbidity, while secondary alcohols do so in five minutes. Primary alcohols do not react significantly with Lucas reagent at room temperature.
2. No reaction (See the attached drawing)
3. (see the attached drawing)
Answer:
D) There must be equal number of atoms of each elements on both sides of equation.
Explanation:
The balancing equation must have equal number of atoms of each elements on both sides of equation.
The balance equation shoes mass is conserved thus followed the law of conservation of mas.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.