Answer:
"Kinetic energy of the gas is more as compared to that of the liquids. But when compare it to the solid, kinetic energy of liquid is more."
Explanation:
a) Relatively high density : This happens as a result of the tight or packed or can be say close arrangement of the particles.
b) Ability to diffuse : As we know that in gases the constant and the random motion of the particles of the liquid leads to diffusion. But it is very slow as compared to the gases and also porque liquid particles are close together.
c) Ability to evaporate:This happens as a result of the molecules of the liquid having different kinetic energies with particles having higher than that of the average energies that move faster.
Answer:
How many moles of oxygen gas are required to make 8.33 moles of carbon dioxide? ... be used to produce 1.99 grams of water. 1.99 mg H2O X. 1mol H2O. 18.0g X ... c. If the reaction produces 5.3 mg of carbon dioxide how many grams of water ... X. 25mol O2. 2mol C8H18. X. 32.0g O2. 1mol O2. = 4.80 x 103g O2. Answer ...
Explanation:
Answer:
Newton's Second Law
Explanation:
Newton's second law basically states that the acceleration of a body which is produced by a net force is directly proportional to the magnitude of net force applied in the same direction.
This tells us that
F is directly proportional to a
⇒ F= ma
So we can also state from the above equation, that when we have more mass, we need more net force to accelerate it. Here, we are keeping the acceleration constant so we can surely say that force and mass varies directly.
Therefore, we have made good use of Newton's Second Law of motion to arrive at this conclusion.
<u>Answer:</u>
<u>For A:</u> The
for the given reaction is 
<u>For B:</u> The
for the given reaction is 1642.
<u>Explanation:</u>
The given chemical reaction follows:

The expression of
for the above reaction follows:

We are given:

Putting values in above equation, we get:

Hence, the
for the given reaction is 
Relation of
with
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = 
= equilibrium constant in terms of concentration = ?
R = Gas constant = 
T = temperature = 500 K
= change in number of moles of gas particles = 
Putting values in above equation, we get:

Hence, the
for the given reaction is 1642.
Sodium is very reactive but it’s a metal, and the problem asks specifically for a non-metal.
Silicone is technically reactive, but not super reactive.
Argon is a nonmetal, however it is an inert gas. It doesn’t react with anything.
We’re left with Chlorine, which is a non-metal in group 7, a highly reactive group, on the periodic table.