Answer:
kJ/mol
Explanation:
Given and known facts
Mass of Benzene
grams
Mass of water
grams
Standard heat capacity of water
J/g∙°C
Change in temperature ΔT
°C
Heat
![=250 * 4.18 * 7.48\\=7816.6 \\=7.82](https://tex.z-dn.net/?f=%3D250%20%2A%204.18%20%2A%207.48%5C%5C%3D7816.6%20%5C%5C%3D7.82)
Heat released by benzine is - 7.82 kJ
Now, we know that
grams of benzene release
kJ heat
So,
g benzine releases
![\frac{ -7.82 }{0.187}\\= -41.8](https://tex.z-dn.net/?f=%5Cfrac%7B%20-7.82%20%7D%7B0.187%7D%5C%5C%3D%20-41.8)
kJ/g
mol C6H6
Heat released
![= \frac{-7.82}{ 0.00239}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B-7.82%7D%7B%200.00239%7D)
kJ/mol
Answer:
10.09 grams
Explanation:
First you need to know the number of moles you are dealing with.
If you know that each mole has 6.022x10²³ of something (in this case of atoms), you can divide 3x10²³ atoms of neons by 6.022x10²³ to obtain the number of moles.
You have 0.5 moles of Neon, so then by the periodic table, you see that the molar mass of neon is 20.18g/mol, so by each mole you have 20.18 grams of neon. Multiply 20.18 grams by 0.5 moles and you got 10.09 grams of Neon
Answer:
Temperature is an abiotic component of an ecosystem
Explanation:
Answer:
10.6 g CO₂
Explanation:
You have not been given a limiting reagent. Therefore, to find the maximum amount of CO₂, you need to convert the masses of both reactants to CO₂. The smaller amount of CO₂ produced will be the accurate amount. This is because that amount is all the corresponding reactant can produce before it runs out.
To find the mass of CO₂, you need to (1) convert grams C₂H₂/O₂ to moles (via molar mass), then (2) convert moles C₂H₂/O₂ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams (via molar mass). *I had to guess the chemical reaction because the reaction coefficients are necessary in calculating the mass of CO₂.*
C₂H₂ + O₂ ----> 2 CO₂ + H₂
9.31 g C₂H₂ 1 mole 2 moles CO₂ 44.0095 g
------------------ x ------------------- x ---------------------- x ------------------- =
26.0373 g 1 mole C₂H₂ 1 mole
= 31.5 g CO₂
3.8 g O₂ 1 mole 2 moles CO₂ 44.0095 g
------------- x -------------------- x ---------------------- x -------------------- =
31.9988 g 1 mole O₂ 1 mole
= 10.6 g CO₂
10.6 g CO₂ is the maximum amount of CO₂ that can be produced. In other words, the entire 3.8 g O₂ will be used up in the reaction before all of the 9.31 g C₂H₂ will be used.
Answer:
Its main advantage is <em>they information fits on one line of text</em> <u>(thus works well when using the formula in paragraphs)</u>. Disadvantages are <em>they can be confusing for larger molecules</em>
<em />
hope this helps :3