Answer:
2x + 3y ≥ 5
Step-by-step explanation:
See the graph attached.
The bold straight line passes through the points (1,1) and (4,-1).
Therefore, the equation of the straight line will be
⇒ 3(y + 1) = - 2(x - 4)
⇒ 3y + 3 = - 2x + 8
⇒ 2x + 3y = 5 ............. (1)
Now, the shaded region i.e. the solution to the inequality does not include the origin(0,0).
So, putting x = 0 and y = 0 in the equation (1) we get, 0 < 5
Therefore, the inequality equation is 2x + 3y ≥ 5 (Answer)
5.34x10⁶ :) you're welcome!!!
If x is a real number such that x3 + 4x = 0 then x is 0”.Let q: x is a real number such that x3 + 4x = 0 r: x is 0.i To show that statement p is true we assume that q is true and then show that r is true.Therefore let statement q be true.∴ x2 + 4x = 0 x x2 + 4 = 0⇒ x = 0 or x2+ 4 = 0However since x is real it is 0.Thus statement r is true.Therefore the given statement is true.ii To show statement p to be true by contradiction we assume that p is not true.Let x be a real number such that x3 + 4x = 0 and let x is not 0.Therefore x3 + 4x = 0 x x2+ 4 = 0 x = 0 or x2 + 4 = 0 x = 0 orx2 = – 4However x is real. Therefore x = 0 which is a contradiction since we have assumed that x is not 0.Thus the given statement p is true.iii To prove statement p to be true by contrapositive method we assume that r is false and prove that q must be false.Here r is false implies that it is required to consider the negation of statement r.This obtains the following statement.∼r: x is not 0.It can be seen that x2 + 4 will always be positive.x ≠ 0 implies that the product of any positive real number with x is not zero.Let us consider the product of x with x2 + 4.∴ x x2 + 4 ≠ 0⇒ x3 + 4x ≠ 0This shows that statement q is not true.Thus it has been proved that∼r ⇒∼qTherefore the given statement p is true.
Answer:
23 + 10x = x + 5
you write out that first 23 plus 10 times x and it gives you 5 more than x
Answer:
None! .7632 is smaller than 9.
Step-by-step explanation: