Answer: The final temperature would be 1250.7 K.
Explanation: We are given a sample of helium gas, the initial conditions are:
(Conversion factor: 1L = 1000 mL)
(Conversion Factor: 1° C = 273 K)
The same gas is expanded at constant pressure, so the final conditions are:


To calculate the final temperature, we use Charles law, which states that the volume of the gas is directly proportional to the temperature at constant pressure.


Putting the values, in above equation, we get:


Organic compounds essential to human functioning include carbohydrates, lipids, proteins, and nucleotides. These compounds are said to be organic because they contain both carbon and hydrogen
Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
1 charged atom is called a Proton