Answer:
Explanation:
<em>Position is the location of the object (whether it's a person, a ball, or a particle) at a given moment in time.</em>
<em>Displacement is the difference in the object's position from one time to another.</em>
<em>Distance is the total amount the object has traveled in a certain period of time.</em>
<em />
<em>I hope this helps!</em>
<em />
For this case, let's
assume that the pot spends exactly half of its time going up, and half going
down, i.e. it is visible upward for 0.245 s and downward for 0.245 s. Let us take
the bottom of the window to be zero on a vertical axis pointing upward. All calculations
will be made in reference to this coordinate system. <span>
An initial condition has been supplied by the problem:
s=1.80m when t=0.245s
<span>This means that it takes the pot 0.245 seconds to travel
upward 1.8m. Knowing that the gravitational acceleration acts downward
constantly at 9.81m/s^2, and based on this information we can use the formula:
s=(v)(t)+(1/2)(a)(t^2)
to solve for v, the initial velocity of the pot as it enters
the cat's view through the window. Substituting and solving (note that
gravitational acceleration is negative since this is opposite our coordinate
orientation):
(1.8m)=(v)(0.245s)+(1/2)(-9.81m/s^2)(0.245s)^2
v=8.549m/s
<span>Now we know the initial velocity of the pot right when it
enters the view of the window. We know that at the apex of its flight, the
pot's velocity will be v=0, and using this piece of information we can use the
kinematic equation:
(v final)=(v initial)+(a)(t)
to solve for the time it will take for the pot to reach the
apex of its flight. Because (v final)=0, this equation will look like
0=(v)+(a)(t)
Substituting and solving for t:
0=(8.549m/s)+(-9.81m/s^2)(t)
t=0.8714s
<span>Using this information and the kinematic equation we can find
the total height of the pot’s flight:
s=(v)(t)+(1/2)(a)(t^2) </span></span></span></span>
s=8.549m/s (0.8714s)-0.5(9.81m/s^2)(0.8714s)^2
s=3.725m<span>
This distance is measured from the bottom of the window, and
so we will need to subtract 1.80m from it to find the distance from the top of
the window:
3.725m – 1.8m=1.925m</span>
Answer:
<span>1.925m</span>
Answer:
c) Both the parts will weigh the same
Explanation:
center of gravity is based on weight so if you cut down the center of gravity you would have 2 equal parts
(might be D if it is cutting against the center of gravity)
Answer:
See below
Explanation:
Total current will be 18 v/ 8 ohms + 18v / 24 ohms = 3 amps
Equivalent resistance = 1 / (1/8 + 1/24) = 6 Ω
Answer:
Radio waves have longer wavelength
Explanation:
Radio wave is an electromagnetic frequency that has the ability to travel through long distance. They have frequencies shuttling been the range of 10^4 hz and a frequency of 10^12 hz
Light wave is also called visible light. This is because it is visible to the naked eye, despite it being in the electromagnetic spectrum. It's frequency is usually between 4*10^-7 hz and a frequency of 7*10^-7 hz.
As can be seen from both, the radio waves length are quite far stronger than that of the light waves.