The kinetic energy of toast is 0.06 J.
<u>Explanation:</u>
Kinetic energy is the way to determine the energy released when an object is in motion. In other times, it can be the energy required to move any object and to make it in motion.
As the mass of the toast is given as 8 g and speed is given as 15 m/s, if we ignore the friction caused by air molecules. Then the kinetic energy is the product of mass and square of velocity.
K.E. =
× mass × v²
Kinetic energy =
Since, the weight is given in grams , it needed to be converted into kg.
Kinetic energy = 0.06 J
Thus, the kinetic energy of toast is 0.06 J.
Assume that the small-massed particle is
and the heavier mass particle is
.
Now, by momentum conservation and energy conservation:


Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.

So now, we see that
and
. So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!
Answer:
230 N
Explanation:
At the lowest position , the velocity is maximum hence at this point, maximum support force T is given by the branch.
The swinging motion of the ape on a vertical circular path , will require
a centripetal force in upward direction . This is related to weight as follows
T - mg = m v² / R
R is radius of circular path . m is mass of the ape and velocity is 3.2 m/s
T = mg - mv² / R
T = 8.5 X 9.8 + 8.5 X 3.2² / .60 { R is length of hand of ape. }
T = 83.3 + 145.06
= 228.36
= 230 N ( approximately )
The centripetal force is provided by the friction between the tyres and the ground. That's why a car will slip on ice, because there is less friction.