Answer:
2361.6N
Explanation:
Mass of player = 82kg
Velocity = 1.2m/s
Kinetic energy of player:
= 1/2mv²
= 1/2*82*1.2²
= 41x1.44
= 59.04J
Final kinetic energy = 0
Change in kinetic energy
|∆k| = |0-59.04|
= 59.04
Workdone by the feet = fd
d = 0.025
Fd = 59.04
F = 59.04/0.025
= 2361.6N
This is his average force.
Answer:
Explanation:
To stop a ball with high momentum in a small-time imparts a high amount of impact on hands. This is the reason for the stinging of hands.
The momentum of the ball is due to the mass and velocity. To prevent stinging in the hand one needs to lower his hands to increase the time of contact. In this way, the momentum transfer to the hands will be lesser.
Probably for the umbilical cord that connects babies (from their early stages in the womb to their removal) to their mothers. The cord is cut, forming the belly button. This is analogous to astronauts in space.
I think iron? i’m not 100% sure
An example of a hypothesis for an experiment might be: “A basketball will bounce higher if there is more air it”
Step one would be to make an observation... “hey, my b-ball doesn’t have much air in it, and it isn’t bouncing ver high”
Step two is to form your hypothesis: “A basketball will bounce higher if there is more air it”
Step three is to test your hypothesis: maybe you want to drop the ball from a certain height, deflate it by some amount and then drop it from that same height again, and record how high the ball bounced each time.
Here the independent variable is how much air is in the basketball (what you want to change) and the dependent variable is how high the b-ball will bounce (what will change as a result of the independent variable)
Step four is to record all of your results and step five is to analyze that data. Does your data support your hypothesis? Why or why not?
You should only test one variable at a time because it is easier to tell why the results are how they are; you only have one cause.
Hope this helps!