let's firstly convert the mixed fractions to improper fractions and then proceed.
![\stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}}~\hfill \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\begin{array}{ccll} miles&hours\\ \cline{1-2} \frac{9}{2}&\frac{5}{4}\\[1em] x&1 \end{array}\implies \cfrac{~~ \frac{9}{2}~~}{x}=\cfrac{~~ \frac{5}{4}~~}{1}\implies \cfrac{~~ \frac{9}{2}~~}{\frac{x}{1}}=\cfrac{5}{4}\implies \cfrac{9}{2}\cdot \cfrac{1}{x}=\cfrac{5}{4} \\\\\\ \cfrac{9}{2x}=\cfrac{5}{4}\implies 36=10x\implies \cfrac{36}{10}=x\implies \cfrac{18}{5}=x\implies 3\frac{3}{5}=x](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bccll%7D%20miles%26hours%5C%5C%20%5Ccline%7B1-2%7D%20%5Cfrac%7B9%7D%7B2%7D%26%5Cfrac%7B5%7D%7B4%7D%5C%5C%5B1em%5D%20x%261%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B9%7D%7B2%7D~~%7D%7Bx%7D%3D%5Ccfrac%7B~~%20%5Cfrac%7B5%7D%7B4%7D~~%7D%7B1%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B9%7D%7B2%7D~~%7D%7B%5Cfrac%7Bx%7D%7B1%7D%7D%3D%5Ccfrac%7B5%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B9%7D%7B2%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bx%7D%3D%5Ccfrac%7B5%7D%7B4%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B9%7D%7B2x%7D%3D%5Ccfrac%7B5%7D%7B4%7D%5Cimplies%2036%3D10x%5Cimplies%20%5Ccfrac%7B36%7D%7B10%7D%3Dx%5Cimplies%20%5Ccfrac%7B18%7D%7B5%7D%3Dx%5Cimplies%203%5Cfrac%7B3%7D%7B5%7D%3Dx)
5/0 UNDEFINED... The answer is a vertical line.
Answer:

Step-by-step explanation:
we are given that A robot is expected to filter pollution out of at least 350 liters of air and water.
Also It filters air at the rate of 50 liters per minute, and it filters water at the rate of 20 liters per minute.
The inequality for number of minutes the robot should filter air (A) and water (W) to meet this expectations can be writte as follows:

Hence the required inequality has been formulated.
Answer:
1222
Step-by-step explanation:
312/12 = 26
So, you have to multiply y (47) by 26
This will get you 1222