Answer:
models are only used by scientists
Answer:
Distance is 13m and Displacement is 9m
Explanation:
Recall that work is the amount of energy transferred to an object when it experiences a displacement and is acted upon by an external force. It is given a symbol of W and is measured in joules (J).
W=\vec{F}\cdot \Delta \vec{d}
We can use this formula to determine the work done by very specific forces, generating specific types of energy. We will examine three types of energy in this activity: gravitational potential, kinetic, and thermal. Before we start deriving equations for gravitational potential energy and kinetic energy, we should note that since work is the transfer and/or transformation of energy, we can also write its symbol as \Delta E.
Answer:
ΔE = 1.031 eV
Explanation:
For this exercise let's calculate the energy of the photons using Planck's equation
E = h f
wavelength and frequency are related
c = λ f
f = c /λ
let's substitute
E = h c /λ
let's calculate
E = 6.63 10⁻³⁴ 3 10⁸/1064 10⁻⁹
E = 1.869 10⁻¹⁹ J
let's reduce to eV
E = 1.869 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
E = 1.168 eV
therefore the electron affinity is
ΔE = E - 0.137
ΔE = 1.168 - 0.137
ΔE = 1.031 eV