You've failed because you failing becomes a statement rather than it becoming fact or what actually happened.
Answer:
Use a faster than normal approach and landing speed.
Explanation
For pilots, it is one of the critical moments of the flight that concentrates 12% of fatal accidents. The main difficulty lies in reaching enough speed to take flight within the space of the runway. At present, it ceased to be a challenge for the aircraft, since the engine power improved, so the takeoff ceased to be the most dangerous moment of the flight.
One of the risks that aircraft face today is that some of the engines fail while the plane accelerates. In that case, the pilot must decide in an instant whether it is better to take flight and solve the problem in the air or if it is preferable not to take off.
Although for many staying on the ground might seem the most sensible option, it is not as simple as it seems: to suddenly decelerate an aircraft, with the weight it has and the speed it reaches can cause accidents. However, today a special cement was designed that runs around the runways of the airports, which when coming into contact with the wheels of the aircraft the ground breaks and helps to slow down.
The magnetic field direction and direction of induced current in a wire are related by the right hand grip rule. Since the magnetic field was upwards, the thumb points upwards and the fingers curl around it. When viewed from above, it is seen as a current flowing in the counter clockwise direction.
First let’s pick one at random
Less than 5 percentile
That means they lined 100 kids up and less than 5% of them are that certain weight.
So if you apply this to every option you will see the answer is
A). Less than 5 percentile
Answer:
KE₂ = 6000 J
Explanation:
Given that
Potential energy at top U₁= 7000 J
Potential energy at bottom U₂= 1000 J
The kinetic energy at top ,KE₁= 0 J
Lets take kinetic energy at bottom level = KE₂
Now from energy conservation
U₁+ KE₁= U₂+ KE₂
Now by putting the values
U₁+ KE₁= U₂+ KE₂
7000+ 0 = 1000+ KE₂
KE₂ = 7000 - 1000 J
KE₂ = 6000 J
Therefore the kinetic energy at bottom is 6000 J.