Divide the change in speed by the time for the change.
Answer: A. a basketball being shot toward the basket
Explanation: The definition of projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. So, the basketball is the object being thrown and the person throwing the ball is aiming it to go into the basket making that the path of trajectory. Hope that makes sense and helps!
The correct answer from the choices listed above is the first option. The statement that is true would be that c<span>ompound AB has chemical and physical properties that are completely different from those of A and B. They completely different substances with different properties.</span>
Answer:
w=3.05 rad/s or 29.88rpm
Explanation:
k = coefficient of friction = 0.3900
R = radius of the cylinder = 2.7m
V = linear speed of rotation of the cylinder
w = angular speed = V/R or to rewrite V = w*R
N = normal force to cylinder
N=


These must be balanced (the net force on the people will be 0) so set them equal to each other.





There are 2*pi radians in 1 revolution so:

So you need about 30 RPM to keep people from falling out the bottom
Explanation:
The intense gravity of the black hole would pull you apart, separating your bones and muscles.