(a) Does an electric field exert a force on a stationary charged object? YES ( F = Eq)
(b) Does a magnetic field do so?- NO ( F= qvB)
(c) Does an electric field exert a force on a moving charged object? YES
(d) Does a magnetic field do so? YES ( F = qvB)
(e) Does an electric field exert a force on a straight current-carrying wire? ( NO)
(f) Does a magnetic field do so? Yes
(g) Does an electric field exert a force on a beam of moving electrons? Yes
(h) Does a magnetic field do so? YeS
To know more about magnetic field visit : brainly.com/question/10353944
#SPJ4
To solve this problem we will apply the concepts related to the wavelength of its third harmonic.
It describes that the wavelength is equivalent to

Here,

The wavelength is in turn described as a function that depends on the change of the speed as a function of the frequency, that is to say

In this case the speed is equivalent to the speed of sound and the frequency was previously given, therefore


Finally the length of the pipe would be


The spider is traveling in a circle with radius = 15cm
The circumference of any circle = <em>2 pi (radius)</em>
The circumference of the spider's path = 2 pi (15 cm) = 30 pi cm
The spider completes a trip around this path 78 times per minute.
Its speed, relative to you, is
(78) x (30 pi) cm/min =
2,340 pi cm/min = 7,351.33 cm/min =
<em> 73.5133 meter/min =</em>
<em>4.411 km/hr =</em>
<em>2.74 miles/hour
</em>(After the last appearance of pi,
all numbers are rounded.)<em>
</em>
In order for the object not to slip, the component of the weight parallel to the surface must be equal to the frictional force (which acts in the opposite direction):

The parallel component of the weight is:

where m is the object mass and

is the angle of the inclined plane.
The frictional force is

where

is the coefficient of static friction.
Equalizing the two forces, we have

from which we find

and so, in our problem the coefficient of static friction must be
The kinetic energy is transferred to thermal energy through friction