Answer:
top speed = 17.25
Total height = 281.19 m
Explanation:
given data
mass = 75 kg
thrust = 160 N
coefficient of kinetic friction = 0.1
solution
we get here frictional force acting that is
frictional force =
.............1
frictional force = 0.1 × 75 × 9.8
frictional force = 73.5 N
and
Net force acting will be F = 160 - 73.5 N
F = 86.5 N
so
Acceleration in the First 15 second will be
F = ma .........2
86.5 = 75 × a
a = 1.15 m/s²
and
now After 15 second the velocity will be as
v = u + at ..........3
here u is 0
so v will be
V = 1.15 × 15
v = 17.25
and
now we get travels distance S in 15 s
s = u × t + 0.5 × a × t²
here u is 0
so distance s will be
s = 0.5 × a × t²
s = 0.5 × 1.15 × 15²
s = 129.37 m
and
now acceleration acting is
F =
m a =
a = 
a = - 0.98
here it is negative it mean downward nature of acceleration
and
now we get distance s by this formula
V² - u² = 2 a s
here v velocity is 0 and
u initial velocity is 17.25 m/s
put here value
0 - 17.25² = 2 × (-0.98) × s
solve it we get
s = 151.82 m
so
Total height is
Total height = 129.37 m + 151.82 m
Total height = 281.19 m
Answer:
Advantages: Very sturdy, can have several cracks in structure before breaking
disadvantages: best for short distances, not attractive, hard to maintain
Answer:
Explanation:
Single-phase transformers can operate to either increasing or decreasing the voltage applied to the primary winding. When a transformer is used to “increase” the voltage on the secondary winding with respect to the primary, it is called a Step-up transformer
The inflated balloon shrinks when it is placed in an ice bath with no change in atmospheric pressure.
<u>Explanation:</u>
When the inflated balloon is subjected to an ice bath, it shrinks. This is due to the fact that smaller volume gets occupied by the air/gas inside the balloon as the temperature decreases. Hence, causes the balloon walls to collapse.
An ice bath also lowers the overall air temperature of the balloon inside. As the temperature decreases, the air molecules move more slowly and with lower energy. Because of the particle's lower energy, their collisions with the walls are not enough to keep the inflated balloon.