Answer:
La velocidad es una magnitud física que expresa la relación entre el espacio recorrido por un objeto, el tiempo empleado para ello y su dirección. ... Su unidad en el Sistema Internacional de Unidades es el metro por segundo (m/s), e incluye la dirección del desplazamiento
Explanation:
Answer:
61.33 Kg
Explanation:
From the question given above, the following data were obtained:
Distance = 1×10² m
Time = 9.5 s
Kinetic energy (KE) = 3.40×10³ J
Mass (m) =?
Next, we shall determine the velocity Leroy Burrell. This can be obtained as follow:
Distance = 1×10² m
Time = 9.5 s
Velocity =?
Velocity = Distance / time
Velocity = 1×10² / 9.5
Velocity = 10.53 m/s
Finally, we shall determine the mass of Leroy Burrell. This can be obtained as follow:
Kinetic energy (KE) = 3.40×10³ J
Velocity (v) = 10.53 m/s
Mass (m) =?
KE = ½mv²
3.40×10³ = ½ × m × 10.53²
3.40×10³ = ½ × m × 110.8809
3.40×10³ = m × 55.44045
Divide both side by 55.44045
m = 3.40×10³ / 55.44045
m = 61.33 Kg
Thus, the mass of Leroy Burrell is 61.33 Kg
Answer:
Explanation:
When the pendulum falls freely the net acceleration due to gravity is zero.
As we know that the time period of simple pendulum is inversely proportional to the square root of acceleration due to gravity, thus the time period becomes infinity.
Answer:
The air is contained at a high pressure in the tube. When it escapes from a small orifice, it suddenly expands. A large amount of its heat is absorbed in the process of expansion resulting in considerable fall in its temperature. This is why the escaping air feels cold.
Answer:
Explanation:
The application of Gauss's law is used in the derivation as shown with detailed step by step in the attached file.
The potential difference on this spherical capacitor is ΔV = Va - Vb = kQ/a - kQ/b = kQ(1/a - 1/b)