Answer:
They are separated by a distance of 18 m. Find the gravitational attraction between them. r= 1 m r= 1 m 18 m. Mass = 1.5 kg. Mass = 8.5 kg.
Answer:
(a) 1.08 m
(b) 1.06 m
Explanation:
<u>Step 1:</u> calculate the center of gravity from 20kg mass
Let the center of gravity from 20kg mass = X
Applying the principle of moment; clockwise moment = ant-clockwise moment
20*X = 35*(1.7-X)
20X = 59.5 - 35X
55X = 59.5
X = 59.5/55
X = 1.08 m
Ignoring the weight of the bar, the center of gravity is 1.08m from left end of the barbell.
<u>Step 2:</u> calculate the center of gravity from 20kg mass, if the 8.0kg mass of the barbell in considered.
Applying the principle of moment


20X +2.353X = 59.5 -35X + 4 - 2.353X
59.706X = 63.5
X = 63.5/59.706
X = 1.06 m
considering the weight of the bar, the center of gravity is 1.06m from left end of the barbell.
Answer:Waves shape the earths surface because they change the form of the coastal land form, meaning that when a wave is formed and moves they are also moving sand and rocks which can change the shape of the surface
Explanation:
The fluid that is being passed through the syringe and needle is incompressible, which means that it will transmit pressure equally. Therefore, the pressure on the plunger will be equivalent to the pressure on the needle. We also know that:
Pressure = Force / Area
Pressure on plunger = 4 / (π*(0.012/2)²)
Pressure on plunger = 35.4 kPa
Pressure on needle = 35.4 kPa
35.4 kPa = F / (4 / (π*(0.0025/2)²)
F = 0.17 N
The force on the needle is 0.17 N