The base unit of time in the metric and SI system is the second.
Answer:Family
Explanation: Family is defined as people you love, people that you can count on. People that make you happy. Family isnt only people who are related to you by blood, we are all a family. Certain people are your family.
-- The car starts from rest, and goes 8 m/s faster every second.
-- After 30 seconds, it's going (30 x 8) = 240 m/s.
-- Its average speed during that 30 sec is (1/2) (0 + 240) = 120 m/s
-- Distance covered in 30 sec at an average speed of 120 m/s
= <span> 3,600 meters .</span>
___________________________________
The formula that has all of this in it is the formula for
distance covered when accelerating from rest:
Distance = (1/2) · (acceleration) · (time)²
= (1/2) · (8 m/s²) · (30 sec)²
= (4 m/s²) · (900 sec²)
= 3600 meters.
_________________________________
When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.
When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.
How does he do that ?
By accelerating at 8 m/s². That's about 0.82 G !
He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph !
He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
Answer:
a) the magnitude of the force is
F= Q(
) and where k = 1/4πε₀
F = Qqs/4πε₀r³
b) the magnitude of the torque on the dipole
τ = Qqs/4πε₀r²
Explanation:
from coulomb's law
E = 
where k = 1/4πε₀
the expression of the electric field due to dipole at a distance r is
E(r) =
, where p = q × s
E(r) =
where r>>s
a) find the magnitude of force due to the dipole
F=QE
F= Q(
)
where k = 1/4πε₀
F = Qqs/4πε₀r³
b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces
τ = F sinθ × s
θ = 90°
note: sin90° = 1
τ = F × r
recall F = Qqs/4πε₀r³
∴ τ = (Qqs/4πε₀r³) × r
τ = Qqs/4πε₀r²