Answer:
Options (1), (2), (3) and (7)
Step-by-step explanation:
Given expression is
.
Now we will solve this expression with the help of law of exponents.
![\frac{\sqrt[3]{8^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}=\frac{\sqrt[3]{(2^3)^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B8%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Ctimes%203%7D%20%7D%7B3%5Ctimes2%5E%7B%5Cfrac%7B1%7D%7B9%7D%7D%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B%282%5E3%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Ctimes%203%7D%20%7D%7B3%5Ctimes2%5E%7B%5Cfrac%7B1%7D%7B9%7D%7D%7D)
![=\frac{\sqrt[3]{2\times 3} }{3\times2^{\frac{1}{9}}}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%5Ctimes%203%7D%20%7D%7B3%5Ctimes2%5E%7B%5Cfrac%7B1%7D%7B9%7D%7D%7D)




[Option 2]
[Option 1]
![2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(\sqrt[9]{2})^2\times (\sqrt[3]{\frac{1}{3} } )^2](https://tex.z-dn.net/?f=2%5E%7B%5Cfrac%7B2%7D%7B9%7D%7D%5Ctimes%203%5E%7B-%5Cfrac%7B2%7D%7B3%7D%20%7D%3D%28%5Csqrt%5B9%5D%7B2%7D%29%5E2%5Ctimes%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%29%5E2)

[Option 3]

[Option 7]
Therefore, Options (1), (2), (3) and (7) are the correct options.
Answer:
3/2
Step-by-step explanation:
Answer:
B (5/8 - 6/8)
Step-by-step explanation:
Since we can just multiply the second fraction by two to get a similar denominator, we just need to multiply the second fraction.
Answer:
The volume of the prism is 
Step-by-step explanation:
we know that
The volume of the prism is equal to

where
B is the area of the triangular base
L is the length of the prism
we have

<em>Find the area of the base B</em>
The area of a equilateral triangle is equal to


substitute

Your answer is 77/60 or 1 17/60