We know that
If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment. (Intersecting Secant-Tangent Theorem)
so
ST²=RT*QT
RT=7 in
QT=23+7-----> 30 in
ST²=7*30-----> 210
ST=√210-----> 14.49 in
the answer is
RT=14.49 in
Answer:
859
Step-by-step explanation:
The demand for Coke products varies inversely as the price of Cole products.
Mathematically:
D α 1/p
Where D = demand, p = price of coke product
D = k/p
Where k = constant of proportionality.
Let us find k.
k = D * p
When Demand, D, is 1250, price, p, is $2.75:
=> k = 1250 * 2.75
k = $3437.5
Now, when price, p, is $4, the demand will be:
D = 3437.5/4
D = 859.375 = 859 (rounding to whole number)
The demand for the product is 859 when the price is $4.
Answer:
must be greater than 7
Step-by-step explanation:
using pythagoras theorem
a^2=b^2-c^2
x^2=15^2-12^2
x^2=225-144
x^2=81
take square root both sides
√x^2=√81
x=9
and 9 is greater than 7
-18x-8y-14 because you need to distribute the digits