133.25 is the awnser for this question
The answer to your question is C.
Answer:
<h2>2/5</h2>
Step-by-step explanation:
The question is not correctly outlined, here is the correct question
<em>"Suppose that a certain college class contains 35 students. of these, 17 are juniors, 20 are mathematics majors, and 12 are neither. a student is selected at random from the class. (a) what is the probability that the student is both a junior and a mathematics majors?"</em>
Given data
Total students in class= 35 students
Suppose M is the set of juniors and N is the set of mathematics majors. There are 35 students in all, but 12 of them don't belong to either set, so
|M ∪ N|= 35-12= 23
|M∩N|= |M|+N- |MUN|= 17+20-23
=37-23=14
So the probability that a random student is both a junior and social science major is
=P(M∩N)= 14/35
=2/5
Answer:

Step-by-step explanation:
Given data :
Sample standard deviation, s = 15
Sample mean, 
n = 23
a). 98% confidence interval




∴ 

So, 98% CI is



Answer:
(x+2) + x + (x+4) = 2(1/2) + 2(x+3)
Step-by-step explanation:
They are equal to each other and the rectangle has 2x more perimeter
The triangle would be divided in half from that rectangle.
Sorry If this is confusing I am not very good at explaining things.