Answer:

Explanation:
First, we find in the tables the ΔH of formation of each compound. As you can see in the (image 1)
Then we solve the ecuation for ΔH°reaction
ΔH°reaction=∑ΔH°f(products)−∑ΔH°f(Reactants)
ΔH°reaction= (-2* 393.5 - 2*285.8) - (52.4 + 0) kJ/mol
ΔH°reaction = -1.41 *10^3 kJ/mol
Given teh equation adn the heat of reaction, reaction 2's heat of reaction can be obtained by simply multiplying teh heat of reaction of 1 by 3. The final answer is -6129 kJ.
The two control bases would be water and salt.
Answer:
a) a0 was 46.2 grams
b) It will take 259 years
c) The fossil is 1845 years old
Explanation:
<em>An unknown radioactive substance has a half-life of 3.20hours . If 46.2g of the substance is currently present, what mass A0 was present 8.00 hours ago?</em>
A = A0 * (1/2)^(t/h)
⇒ with A = the final amount = 46.2 grams
⇒ A0 = the original amount
⇒ t = time = 8 hours
⇒ h = half-life time = 3.2 hours
46.2 = Ao*(1/2)^(8/3.2)
Ao = 261.35 grams
<em>Americium-241 is used in some smoke detectors. It is an alpha emitter with a half-life of 432 years. How long will it take in years for 34.0% of an Am-241 sample to decay?</em>
t = (ln(0.66))-0.693) * 432 = 259 years
It will take 259 years
<em>A fossil was analyzed and determined to have a carbon-14 level that is 80% that of living organisms. The half-life of C-14 is 5730 years. How old is the fossil?</em>
<em />
t = (ln(0.80))-0.693) * 5730 = 1845
The fossil is 1845 years old
The limiting reactant when 5.6 moles of aluminium react with 6.2 moles of water is
water( H2O)
<u><em>Explanation</em></u>
The balanced equation is as below
2 Al +3 H2O → Al2O3 +3 H2
The mole ratio of Al :Al2O3 is 2:1 therefore the moles of Al2O3
= 5.6 x1/2 = 2.8 moles
The mole ratio of H2O: Al2O3 is 3:1 therefore the moles of Al2O3 produced
= 6.2 x1/3= 2.067 moles
since H2O yield less amount of Al2O3 , H2O is the limiting reagent.