The vapor pressure of the two jars are the same.
The volume of water inside the container does not change the vapor pressure.
As long as the liquid remains being water and the temperature does not change the vapor pressure will be the same. The vapor pressure depends only in the nature of the substance and the temperature of the system.
If you want to know more about this, i.e. why, here you have additional explanation:
The vapor pressure is the pressure of the vapor of a substance in equilibrium with the substance in liquid (or solid state) and it is due to the fact that some molecules in the liquid (or solid), those that are close to the surface of liquid in contact with the gas phase and that have enough kinetic energy, evaporate.
At equilibrium the number of molecules passing from the liquid state to the gas state is equal to the number of molecules that pass from the gas state to the liquid state. If the volume of liquid is increased or decreased, as long as the temperaature of the system remains constant the equilibrium is reached again with the same vapor pressure.
Answer:
The partial pressure of CO₂ will decrease.
Explanation:
The reaction:
2CO (g) + O₂ (g) ⇄ 2CO₂ (g) has a ΔH = –566 kJ/mol. As ΔH<0, the reaction is exothermic.
Le Chatelier's principle says that if a system in chemical equilibrium is subjected to a disturbance it tends to change in a way that opposes this disturbance.
In this case, with increasing of the temperature, the system will produce less heat, doing the equilibrium shifts to the left.
Thus, the partial pressure of both CO and O₂ will increase. And<em> partial pressure of CO₂ will decrease.</em>
I hope it helps!
Answer:
Neutral ions
Explanation:
Because they have a neutral charge They can only produce neutrally.
Looks correct but the second to last I would of put abiotic and biotic factors but I don’t know what’s right for you