<span>Earth is the only planet able to support _____
Life
</span>
<h2>Circular path i.e 1</h2>
Explanation:
If the driver steer into circular path , the acceleration of car will be
acceleration = velocity²/radius of circle
Because the velocity and radius of circle are both constant at all points . Thus the acceleration will also remain constant .
In case 3 and 4 , the radius of path changes . Because velocity is constant . Therefore the acceleration will not remain constant
Answer:
the cat is 0.4238 m in front of the dog as it leaps through the window
Explanation:
Given that;
acceleration a = 0.85 m/s²
speed v = 1.40 m/s
the cat is at rest, so initial velocity u = 0
we know that, since the cat is sleeping on the floor in the middle of a 2.8-m-wide room, it needs to cover (2.8 m / 2 ) distance to get to the window;
using the second equation equation of motion;
s = ut + 1/2 at²
we substitute
2.8/2 = 0×t + 1/2 × 0.85 × t²
1.4 = 0.425t²
t = √( 1.4 / 0.425 )
t = 1.81497 sec
now, at acceleration 0.10 m/s²
the dog has to cover the distance;
s = ut + 1/2 at²
s = ( 1.4 × 1.81497) - 1/2 × 0.10 × 1.81497²
s = 2.540958 - 0.1647
s = 2.3762 m
The cant in front of the dog as it leaps through the window;
distance = 2.8 m - 2.3762 m
distance = 0.4238 m
Therefore, the cat is 0.4238 m in front of the dog as it leaps through the window
Answer:
25 m/s
Explanation:
First of all, we can find the acceleration the object by using Newton's second law of motion:

where
F = 20.0 N is the net force applied on the object
m = 4.0 kg is the mass of the object
a is its acceleration
Solving for a, we find

Now we know that the motion of the object is a uniformly accelerated motion, so we can find its final velocity by using the following suvat equation:

where
v is the final velocity
u = 0 is the initial velocity
is the acceleration
t = 5 s is the time
By substituting,

I think its [B]
Personally i would say [B] only because If you are looking beyond the car in front of you..... then what if the car in front of you throws on breaks... you would hit them in the butt because you weren't paying attention to the car.
And majority of the time if your looking in the lanes beside you then you are most likely trying to get in that lane.