Answer:
the maximum possible constant speed is 8 m/sec
Explanation:
from the image, Given that
r(t) = (2t, t²,t²/3), -5 ≤ t ≤ 5
Given that the curvature K(t) = 2 / ( t² + 2)²
note that t² + 2 ≥ 2
(t² + 2)² ≥ 4
1 / (t² + 2)² ≤ 1/4
2 / (t² + 2)² ≤ 1/2
Also note that k(0) = 1/2
The normal component of acceleration satisfies aN = kv²
where v = ║v(t)║is the speed of the roller coaster.
The maximum possible normal component of acceleration is 32
so, aN ≤ 32 every where on the track
aN = kv² ≤ 1/2v² ≤ 32
v² ≤ 64
Therefore, the maximum possible constant speed is 8 m/sec
Answer:
hello the diagram relating to this question is attached below
a) angular accelerations : B1 = 180 rad/sec, B2 = 1080 rad/sec
b) Force exerted on B2 at P = 39.2 N
Explanation:
Given data:
Co = 150 N-m ,
<u>a) Determine the angular accelerations of B1 and B2 when couple is applied</u>
at point P ; Co = I* ∝B2'
150 = ( (2*0.5^2) / 3 ) * ∝B2
∴ ∝B2' = 900 rad/sec
hence angular acceleration of B2 = ∝B2' + ∝B1 = 900 + 180 = 1080 rad/sec
at point 0 ; Co = Inet * ∝B1
150 = [ (2*0.5^2) / 3 + (2*0.5^2) / 3 + (2*0.5^2) ] * ∝B1
∴ ∝B1 = 180 rad/sec
hence angular acceleration of B1 = 180 rad/sec
<u>b) Determine the force exerted on B2 at P</u>
T2 = mB1g + T1 -------- ( 1 )
where ; T1 = mB2g ( at point p )
= 2 * 9.81 = 19.6 N
back to equation 1
T2 = (2 * 9.8 ) + 19.6 = 39.2 N
<u />
Answer:
The frequency of radiation is 
Explanation:
Given:
Wavelength
m
Speed of light

For finding the frequency of radiation,




Therefore, the frequency of radiation is 
Answer:
The wavelength of the radiation absorbed by ozone is 319.83 nm
Explanation:
Given;
frequency of absorbed ultraviolet (UV) radiation, f = 9.38×10¹⁴ Hz
speed of the absorbed ultraviolet (UV) radiation, equals speed of light, v = 3 x 10⁸ m/s
wavelength of the absorbed ultraviolet (UV) radiation, λ = ?
Apply wave equation for speed, frequency and wavelength;
v = fλ
λ = v / f
λ = (3 x 10⁸) / (9.38×10¹⁴)
λ = 3.1983 x 10⁻⁷ m
λ = 319.83 x 10⁻⁹ m
λ = 319.83 nm
Therefore, the wavelength of the radiation absorbed by ozone is 319.83 nm