Answer:
Definition. Nuclear physics is the study of the protons and neutrons at the centre of an atom and the interactions that hold them together in a space just a few femtometres (10-15 metres) across. Example nuclear reactions include radioactive decay, fission, the break-up of a nucleus, and fusion, the merging of nuclei.
Explanation:
here is your answer hope you will enjoy and mark me as brainlist
thank you
To solve this problem we will apply the concepts related to pressure, depending on the product between the density of the fluid, the gravity and the depth / height at which it is located.
For mercury, density, gravity and height are defined as



For the air the defined properties would be



We have for equilibrium that


Replacing,

Rearranging to find 


Therefore the elevation of the mountain top is 9400ft
I believe it would be Tendonitis
<h2>Answer:</h2>
The diagram is not showing the second law of thermodynamics. It is the demonstration of 1st law of thermodynamics.
<h3>Explanation:</h3>
Second law of thermodynamics describes the entropy of the system increase with time, it does not decrease with time. It is constant for ideal systems.
While in first law of thermodynamics, it is stated that the energy of a system can not be lost but it is transferred from one form to other form.
And in this picture, it is shown that the energy released from heat source to cold sink is used in doing work.
Work and heat are forms of energy.
Refer to the diagram shown below.
μ = the coefficient of dynamic friction between the crate and the ramp.
1. The applied force of F acts over a distance, d.
The work done is F*d.
2. The component of the weight of the crate acting down the ramp is
mg sin(30) = 0.5mg.
The work done by this force is 0.5mgd.
3. The normal force is N = mgcos(30) = 0.866mg.
This force is perpendicular to the ramp, therefore the work done is zero.
4. The frictional force is μN = μmgcos(30) = 0.866μmg.
The work done by the frictional force is 0.866μmgd.
5. The total force acting on the crate up the ramp is
F - mgsin(30) - μmgcos(30) = F - mg(0.5 - 0.866μ)
6. The work done on the crate by the total force is
d*(F - 0.5mg - 0.866μmg)