Based on the trend produced by the dose - response graph, it would be best to evacuate the residents in other to prevent the increasing percentage of deaths due to the rising level of pollutant A.
- The curve shows that the pollutant level in mg/kg of pollutant A is still increasing, hence, groundwater monitoring alone won't be the best decision to make.
- Since the pollutant level is still increasing, then the spill level still need effective monitoring.
- Evacuation of residents seems to be the best decision that should be taken based on the information interpreted on the graph.
Therefore, Evacuating residents to prevent rising death percentage is required as the pollutant level is yet to subside.
Learn more :brainly.com/question/24844489
Answer:
a) Temperatura, b) Temperature, c) Constant
, d) None of these
, e) Gibbs enthalpy and free energy (G)
Explanation:
a) the expression for ideal gases is PV = nRT
Temperature
b) The internal energy is E = K T
Temperature
c) S = ΔQ/T
In an isolated system ΔQ is zero, entropy is constant
Constant
d) all parameters change when changing status
None of these
e) Gibbs enthalpy and free energy
Answer:
n= 16021.03 slaps
Explanation:
Using law of Energy conservation
E_{thermal}= Kinetic energy of hand
⇒
m_h= mass of the hand = 0.4 kg
v_h= velocity of the hand = 10 m/s
n= number of slaps
c= 4180 J/Kg °C
m= mass of chicken = 1 kg
Assuming all the energy of hand goes into chicken
Given Ti=0°C and T_f= 170 F= 76.66°C
Now putting the values in above equation to get n

n= 16021.03 slaps