Answer:
See below
Step-by-step explanation:
heat gained by metal + heat lost by water = 0
m₁C₁ΔT₁ + m₂C₂ΔT₂ = 0
C₁ = -(m₂C₂ΔT₂)/(m₁ΔT₁)
The factors determining C₁ are
- mass of water
- temperature change of water (T_f - Ti)
- mass of metal
- temperature change of metal (T_f - Ti)
Any factor that makes the numerator higher or the denominator lower than what you thought, will give a calculated C₁ that is too high (and vice versa).
The major sources of uncertainty are probably in determining the temperatures, especially the initial and final temperatures of the metal. However, you will have to decide what the principal factors were in your experiment.
For example, did the metal have a chance to cool during the transfer to the calorimeter? How easy was it to determine the equilibrium temperature, etc?
Factors Affecting the Calculation of Specific Heat Capacity
<u> Too Low </u> <u> Too high </u>
Water Water
Mass less than thought Mass more than thought
Ti lower Ti higher
T_f higher T_f lower
Metal Metal
Mass more than thought Mass less than thought
Ti higher Ti lower
Answer: pH of HCl =5, HNO3 = 1,
NaOH = 9, KOH = 12
Explanation:
pH = -log [H+ ]
1. 1.0 x 10^-5 M HCl
pH = - log (1.0 x 10^-5)
= 5 - log 1 = 5
2. 0.1 M HNO3
pH = - log (1.0 x 10 ^ -1)
pH = 1 - log 1 = 1
3. 1.0 x 10^-5 NaOH
pOH = - log (1.0 x 10^-5)
pOH = 5 - log 1 = 5
pH + pOH = 14
Therefore , pH = 14 - 5 = 9
4. 0.01 M KOH
pOH = - log ( 1.0 x 10^ -2)
= 2 - log 1 = 2
pH + pOH = 14
Therefore, pH = 14 - 2 = 12
This question is more for Biology than Chemistry, but the role of producers is to make energy (food) to be consumed. In a pyramid diagram, the producers would be at the bottom. Now going up the pyramid, the primary conumers are the first to consume producers and obtain energy from them. As you go up the pyramid, the secondary consumers will consume the primary consumers as a way to obtain energy, and the same goes for tertiary consumers towards secondaries.
As you go up the energy pyramid, you will notice a trend that there is less energy being obtained from each consumer. In other words, the producers will ALWAYS have more energy than the tertiary consumers.
I hope this answers your question.
Answer:
An electrolytic cell uses electrical energy to drive a non-spontaneous redox reaction. An electrolytic cell is a kind of electrochemical cell. ... The electrolyte is usually a solution of water or other solvents in which ions are dissolved. Molten salts such as sodium chloride are also electrolytes.
Explanation: