Answer : The % of (+) limonene isomer = 79%
The % of (-) limonene isomer = 0%
The % of enantiomeric excess = 58%
Explanation : Enantiomeric excess (ee) is the measurement of purity used for chiral substances.
Given,
% of pure limonene enantiomer = The % of (+) limonene isomer = 79%
Therefore, The % of (-) limonene isomer = 0%
Formula used :

Where, ee → enantiomeric excess
Now, put all the values in above formula, we get the value of enantiomeric excess (ee).


= 58%
Answer:
Equilibrium concentrations of the gases are



Explanation:
We are given that for the equilibrium

Temperature, 
Initial concentration of



We have to find the equilibrium concentration of gases.
After certain time
2x number of moles of reactant reduced and form product
Concentration of



At equilibrium
Equilibrium constant
![K_c=\frac{product}{Reactant}=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7Bproduct%7D%7BReactant%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
Substitute the values



By solving we get

Now, equilibrium concentration of gases



Bronze metal is harder and more malleable than copper. It is also conducts property of ductility, so it can be easily shaped as a statue.
Thallium has got 81 protons
<u>Have a nice days.......</u>
Answer:
Explanation:
Relation between ΔG₀ and K ( equilibrium constant ) is as follows .
lnK = - ΔG₀ / RT

The value of R and T are same for all reactions .
So higher the value of negative ΔG₀ , higher will be the value of K .
Mg(s) + N₂0(g) → MgO(s) + N₂(g)
has the ΔG₀ value of -673 kJ which is highest negative value . So this reaction will have highest value of equilibrium constant K .