The smallest functional and structural unit of an organism, usually microscopic and consisting of cytoplasm and a nucleus in a membrane.
Answer:
Both have the same amount of particles.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ particles.
This implies that 1 mole of Hydrogen contains 6.02×10²³ particles. Also, 1 mole of oxygen contains 6.02×10²³ particles.
Thus, 1 mole of Hydrogen and 1 mole of oxygen contains the same number of particles.
The correct answer is: [C]:
___________________________________________________________
"<span>pressure and the number of gas molecules are directly related."
___________________________________________________________
<u>Note</u>: The conclusion was: "</span> as the pressure in a system increases, the number of gas molecules increases" — over the course of many trials.
This means that the "pressure" and the "number of gas molecules" are directly related.
Furthermore, this conclusion is consistent with the "ideal gas law" equation:
" PV = nRT " ;
____________________________________________________________
in which:
"P = Pressure" ;
"n = number of gas molecules" ;
___________________________________________________________
All other factors held equal, when "n" (the "number of gas molecules")
increases in value (on the "right-hand side" of the equation), the value for "P" (the "pressure" — on the "left-hand side" of the equation), increases.
___________________________________________________________
If 0.25mg of atropine is in 1mL
so
0.50mg of atropine is in x
Data Given:
Time = t = ?
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 107.86/1 = 107.86 g
Amount Deposited = W = 17.3 g
Solution:
According to Faraday's Law,
W = I t e / F
Solving for t,
t = W F / I e
Putting values,
t = (17.3 g × 96500) ÷ (10 A × 107.86 g)
t = 1547.79 s
t = 1.54 × 10³ s