Answer:
The rate of consumption of
is 2.0 mol/L.s
Explanation:
Applying law of mass action to this reaction-
![-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=-\frac{1}{3}\frac{\Delta [O_{2}]}{\Delta t}=\frac{1}{2}\frac{\Delta [N_{2}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7D%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D-%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7B%5CDelta%20%5BO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5CDelta%20%5BN_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
where
represents rate of consumption of
,
represents rate of consumption of
,
represents rate of formation of
and
represents rate of formation of
.
Here rate of formation of
is 3.0 mol/(L.s)
From the above equation we can write-
![-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7D%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
Here ![\frac{\Delta [H_{2}O]}{\Delta t}=3.0 mol/(L.s))](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D%3D3.0%20mol%2F%28L.s%29%29)
So, ![-\frac{\Delta [NH_{3}]}{\Delta t}=\frac{4}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B4%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
Hence,
Answer:
By the time the Vesuvius eruption sputtered to an end the next day, Pompeii was buried under millions of tons of volcanic ash. About 2,000 Pompeiians were dead, but the eruption killed as many as 16,000 people overall. By
the time the Vesuvius eruption sputtered to an end the next day, Pompeii was buried under millions of tons of volcanic ash. About 2,000 Pompeiians were dead, but the eruption killed as many as 16,000 people overall.
Explanation:
Answer:
B) Iron (c=0.45 J/g°C)
Explanation:
Given that:-
Heat gain by water = Heat lost by metal
Thus,
Where, negative sign signifies heat loss
Or,
For water:
Mass = 120 g
Initial temperature = 21.8 °C
Final temperature = 24.5 °C
Specific heat of water = 4.184 J/g°C
For metal:
Mass = 40.2 g
Initial temperature = 99.3 °C
Final temperature = 24.5 °C
Specific heat of metal = ?
So,



<u>This value corresponds to iron. Thus answer is B.</u>
Answer:
Transition Metals
Explanation:
The elements in groups 3-12 are called Transition Metals. These groups contain metals that usually form multiple cations. All other groups on the table (1, 2, 13-18) are called Main Group Elements.