Answer:
5x^2+22x-12 x cannot be -5, -4, -2
(x+5)(x+4)(x+2)
Step-by-step explanation:
In order to solve this, your denominator must be the same. Let's start by writing out the two different quadratic formulas:
x^2 + 6x + 8 <-- This should factor out to (x+4)(x+2)
x^2 + 7x + 10 <-- This should factor out to (x+5)(x+2)
Now that you have factored out the two quadratics, plug them into the equation.
5x - 3
(x+4)(x+2) (x+5)(x+2)
Now as we know, -2 cannot be x because it will turn the entire equation undefined. Multiple top and bottom with (x+5) on the right side and (x+4) on the left side.
5x (x+5) - 3(x+4)
(x+5)(x+4)(x+2) (x+5)(x+4)(x+2)
Focus on the top. 5x(x+5) will turn out to be 5x^2+25x. 3(x+4) will turn out to be 3x+12. Combine the two equations because now they are equal to each other and do the subtraction:
5x^2+25x - (3x+12) = 5x^2+22x-12 x cannot be -5, -4, -2
(x+5)(x+4)(x+2) (x+5)(x+4)(x+2)
X,y is 5(5y,-2y) and 5(y-2)
Answer:
The roots (zeros) of the function are:

Step-by-step explanation:
Given the function

substitute f(x) = 0 to determine the zeros of the function

First break the expression x² + 3x - 40 into groups
x² + 3x - 40 = (x² - 5x) + (8x - 40)
Factor out x from x² - 5x: x(x - 5)
Factor out 8 from 8x - 40: 8(x - 5)
Thus, the expression becomes

switch the sides

Factor out common term x - 5

Using the zero factor principle
if ab=0, then a=0 or b=0 (or both a=0 and b=0)

Solve x - 5 = 0
x - 5 = 0
adding 5 to both sides
x - 5 + 5 = 0 + 5
x = 5
solve x + 8 = 0
x + 8 = 0
subtracting 8 from both sides
x + 8 - 8 = 0 - 8
x = -8
Therefore, the roots (zeros) of the function are:

Answer:
If Lauren spend 2/3 of her 24-hour computer time doing homework, this means she spent 16 hours doing homework. Each third of the 24 hours is 8 hours, so two thirds would be 16 hours.