Answer:
7.32g of HNO3 are required.
Explanation:
1st) From the balanced reaction we know that 2 moles of HNO3 react with 1 mole of Ca(OH)2 to produce 2 moles of H2O and 1 mole of Ca(NO3)2.
From this, we find that the relation between HNO3 and Ca(OH)2 is that 2 moles of HNO3 react with 1 mole of Ca(OH)2.
2nd) This is the order of the relations that we have to use in the equation to calculate the grams of nitric acid:
• starting with the 4.30 grams of Ca(OH)2.
,
• using the molar mass of Ca(OH)2 (74g/mol).
,
• relation of the 2 moles of HNO3 that react with 1 mole of Ca(OH)2 .
,
• using the molar mass of HNO3 (63.02g/mol).

So, 7.32g of HNO3 are required.
Answer is: C) the fact that the number of lone pairs of electrons on the central atom is greater in the case of water.
Carbon(IV) oxide is nonpolar because CO₂ is linear molecule and the oxygen atoms are symmetrical (bond angles 180°).
Water is polar because of the bent shape of the molecule.
Oxygen atom in water molecule has sp3 hybridization. The bond angle between the two hydrogen atoms is approximately 104.45°.
Oxygen atom has atomic number 8, it means it has eight protons and eight electrons, so atom has neutral charge. Oxygen is a nonmetal.
Electron configuration of oxygen atom: ₈O 1s² 2s² 2p⁴.
Oxygen atom has six valence electrons
, two lone pairs and two electrons that form two sigma bonds with hydrogen atoms.
Carbon is a chemical element with symbol C and atomic number 6, which means it has 6 protons and six electrons. Four valence electrons are in 2s and 2p orbitals.
Electron configuration of carbon atom: ₆C 1s² 2s² 2p².
In carbon dioxide, carban has sp hybridization with no lone pairs.
Answer:
43.868 J
Explanation:
Kinetic energy of a body is the amount of energy possessed by a moving body. The SI unit of kinetic energy is the joule (kg⋅m²⋅s⁻²).
According to classical mechanics, kinetic energy = 1/2 m·v²
Where, m= mass in kg and v= velocity in m/s
Given: m = 19.2 lb and v = 7.10 miles/h
Since, 1 lb= 0.453592 kg
∴ m = 19.2 lb = 19.2 × 0.453592 kg = 8.709 kg
Also, 1 mi = 1609.34 m and 1 h = 3600 sec
∴ v = 7.10 mi/h = 7.10 × 1609.34 m ÷ 3600 sec = 3.174 m/sec
Therefore, <u>kinetic energy of the goose</u> = 1/2 m·v² = 1/2 × (8.709 kg)× (3.174 m/sec)² = 43.868 J
Answer:
The value of the Golden Igloo is $227.4 million.
Explanation:
First, we need to find the inner and the outer volume of the half-spherical shell:


The total volume is given by:

Where:
: is the inner volume
: is the inner radius = 1.25/2 = 0.625 m
: is the outer volume
: is the outer radius = 1.45/2 = 0.725 m
Then, the total volume of the Igloo is:
![V_{T} = \frac{2}{3}\pi r_{o}^{3} - \frac{2}{3}\pi r_{i}^{3} = \frac{2}{3}\pi [(0.725 m)^{3} - (0.625 m)^{3}] = 0.29 m^{3}](https://tex.z-dn.net/?f=%20V_%7BT%7D%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r_%7Bo%7D%5E%7B3%7D%20-%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r_%7Bi%7D%5E%7B3%7D%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20%5B%280.725%20m%29%5E%7B3%7D%20-%20%280.625%20m%29%5E%7B3%7D%5D%20%3D%200.29%20m%5E%7B3%7D%20)
Now, by using the density we can find the mass of the Igloo:

Finally, the value (V) of the antiquity is:
Therefore, the value of the Golden Igloo is $227.4 million.
I hope it helps you!