Answer:Reducing mass i.e. water
Explanation:
Frequency For given mass in glass is given by

where k =stiffness of the glass
m=mass of water in glass
from the above expression we can see that if mass is inversely Proportional to frequency
thus reducing mass we can increase frequency
Answer: h = 0.52m
Explanation:
Using the equation of out flow;
A1 × V1 = A2 ×V2
Where A1 = area of the first nozzle
A2 = area of the second nozzle
V1= velocity of flow out from the first nozzle
V2 = velocity of flow out from 2nd nozzle
But AV= area of nozzle × velocity of water = volume of water per second(m³/s).
Now we can set A×V = Area of nozzle × height of rise.
Henceb A1× h1 = A2 × h2 ( note the time cancel on both sides)
D1 = 20mm= 0.02m; h1 = 0.13m
D2 = 10mm = 0.01m; h2= ?
h2 = π(D1/2)²× h1 /π(D2/2)²
h2 = (0.02/2)² × 0.13/(0.01/2)²
= (0.01)² ×0.13 /(0.005)²
= 1.3 × 10^-5/(5 × 10^-3)²
= 1.3 × 10^-5/25 × 10^-6
= (1.3/25) 10^-5 × 10^6
= 0.052× 10
= 0.52m
This means acceleration a is constant.
Let
a) vo be the initial speed, at t=0
b) v be the final speed after time t
c) d distance travelled in time t
Then we have:
a) v=vo+a×t
b) v²=vo²+2×a×d (Galilei's equation)
c) d=vo×t+a×t²/2
d) average speed vm=(vo+v)/2
Answer:
Explanation:
We shall apply the formula of Doppler effect here
F( APPARENT) = F( REAL ) X V/(V + Vs) [ v is velocity of sound and Vs is velocity of source.
415 = 440 X 343/343+Vs
142345 + 415Vs = 150920
415 V₀ = 8575
V₀ = 20.66 m/s.
The angle of refraction is <span>45°.</span>