1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olasank [31]
3 years ago
5

0.0000302 in scientific notation

Physics
2 answers:
Alex73 [517]3 years ago
5 0

Answer:

3.02x10^-5

Explanation:

A scientific notation consists of

c x 10^n

the c must be a number between 1-9, while n must be an integer.

it indicates the c being multiplied by the nth power of 10.

From 0.0000302, we need to move the decimal to after 3 so that 3.02 can be a number between 1-9. When moving the decimal point to the right side, each digit moved counts as -1 power of 10.

So, to give 3.02, we need to move the decimal by 5 digits. hence, we can conclude n = -5.

0.0000302 = 3.02x10^-5

miss Akunina [59]3 years ago
4 0
The answer is 3.02 x 10^-5
You might be interested in
Suppose you increase your walking speed from 7 m/s to 15 m/s in a period of 3 s. What is your acceleration?
lisov135 [29]

You asked the question twice I answered it on the last one

7 0
3 years ago
Monochromatic light falls on two very narrow slits 0.048 mm apart. successive fringes on a screen 5.00 m away are 6.5 cm apart n
atroni [7]
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is
y= \frac{m \lambda D}{d}
where D=5.00 m is the distance of the screen from the slits, and 
d=0.048 mm=0.048 \cdot 10^{-3}m is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
\lambda =  \frac{yd}{mD}= \frac{(0.065 m)(0.048 \cdot 10^{-3}m)}{(1)(5.00 m)}=  6.24 \cdot 10^{-7}m

And from the relationship between frequency and wavelength, c=\lambda f, we can find the frequency of the light:
f= \frac{c}{\lambda}= \frac{3 \cdot 10^8 m/s}{6.24 \cdot 10^{-7}m}=4.81 \cdot 10^{14}Hz
4 0
3 years ago
A runner begins a race from the starting line and accelerates to a speed of 8.9 m/s. If it takes the runner 3 seconds to reach h
stellarik [79]

Answer:

i believe its 26.7

Explanation:

if the runner goes 8.9 m/s each second while accelerating for 3 seconds to reach top speed, the top speed would be 26.7 m/s

4 0
2 years ago
Read 2 more answers
A solenoid with 435 turns has a length of 7.50 cm and a cross-sectional area of 3.50 ✕ 10−9 m2. Find the solenoid's inductance a
OLga [1]

Answer:

Solenoid's inductance is 1.11 × 10^-8H

The average emf around the solenoid is 1.3 × 10^-5V

Explanation: Please see the attachments below

4 0
3 years ago
One of China's cement factories has become more energy efficient by ________. a. using the extra gas and heat from the kilns to
OleMash [197]

Answer:

a. using the extra gas and heat from the kilns to generate electricity

Explanation:

Wiley Online Library

Energy Science & EngineeringVolume 5, Issue 2

Research Article Open Access

The generation of power from a cement kiln waste gases: a case study of a plant in Kenya

Stanley Ngari Irungu Peter Muchiri Jean Bosco Byiringiro

First published: 01 April 2017

https://doi.org/10.1002/ese3.153

Citations: 1

No funding information provided.

About

Sections

Share on

Abstract

The cement production process is energy intensive both in terms of the thermal energy (firing the kiln, drying and De carbonation) and electrical energy for driving the numerous drives within the process line. The average specific power consumption of the case study plant was 111 kWh/ton of cement with an average peak demand of 9.7 MW. The high cost of electric power at 0.14 USD/kWh results in very high cost of production that significantly lowers the company's profit margin and limits its competitive advantage. The generation of electrical power from waste heat recovery would reduce the electricity power bill through partially substituting the power procured from the national grid. This research evaluated the potential that the plant has for generating electrical power from the hot waste gases vented into the atmosphere and it was found that the plant has the potential to generate 3.4 MWh of electrical power. This results to a net potential to generate 2.89 MWh of electrical power after factoring in the auxiliary power consumption by Waste heat recovery plant system at 15%. This ultimately gave a reduction of 33% in the electricity power bill of the case study plant. The paper recommends the installation of a steam rankine cycle for the power generating plant. In this work the authors designed the steam boilers for the waste heat recovery plant for conversion of thermal energy to electrical energy, selected a commercial steam turbine and evaluated its economic feasibility and established that the designed plant would have a simple payback period of 2.7 years.

Introduction

The cement manufacturing process is an energy intensive industry, both in terms of thermal and electrical energy. The cost of energy keeps on fluctuating and this negatively impact on the manufacturing cost and eventually lowers the competitiveness and profitability of the cement industry. The energy costs in a cement industry account for about 26% of the total manufacturing cost of cement which is in the form of electrical energy accounting for 25% of the input energy and 75% is thermal energy 1. Furthermore, the sources of thermal energy utilized in the cement industry are mostly nonrenewable and this necessitates deep consideration of energy conservation to guarantee sustainability.

The case study plant suffers financial loss as a result of higher per unit cost of power from the grid and the poor reliability of the supply. The poor reliability of supply negatively affects the kiln operations (the heart of operations) as a result of the sensitivity of the process to power quality resulting in high set up costs. This significantly raises the cost of production for the case study plant and eventually results in the loss of her competitive advantage.

The generation of Power from the cement kiln Waste Heat gases is an energy saving opportunity and it entails the recovery of the heat energy contained in the waste gases that are emitted into the atmosphere from the cement kiln. According to 2, the generation of Power from kiln Waste Heat Recovery is about conversion of the waste heat from the clinkering process into useful electrical energy. Cogeneration of power is achieved by utilizing this waste heat streams from the preheater and the cooler, passing the waste gases through boilers, which in turn generate steam which is used to turn/run turbines to generate electricity

7 0
3 years ago
Other questions:
  • ๒гคเภɭץ ๓๏๔ร ςคภ รยςк ค ๔เςк ๒єςคยรє คɭɭ Շђєץ ๔๏ เร รՇєคɭ ק๏เภՇร Ŧг๏๓ ץ๏ย คภ๔ ץ๏ย ςคภՇ ๔๏ ภ๏Շђเภﻮ ค๒๏ยՇ เՇ
    11·1 answer
  • Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.55 μC charge and flies due west at a speed of
    11·1 answer
  • The first step in responding to any sports injury is to __________.
    10·2 answers
  • A metal disk of radius 6.0 cm is mounted on a frictionless axle. Current can flow through the axle out along the disk, to a slid
    12·1 answer
  • A(n) 9.9 g bullet is fired into a(n) 138 g block of wood at rest on a horizontal surface and stays inside. After impact, the blo
    9·1 answer
  • What is the acceleration of this object? The object's mass is 2 kg.
    6·2 answers
  • Describe the parts of the wheel and axle
    13·2 answers
  • What are not examples of velocity
    15·2 answers
  • What is acceleration
    11·1 answer
  • A 100-turn coil has a radius of 7.50 cm and a resistance of 50.0 W. At what rate must a perpendicular magnetic field change to p
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!