Answer:
(A) L = 115.3kgm²/s
(B) dL/dt = 94.1kgm²/s²
Explanation:
The magnitude of the angular momentum of the rock is given by the foemula
L = mvrSinθ
We have been given θ = 36.9°, m = 2.0kg, v = 12.0m/s and r = 8.0m.
Therefore L = 2.00 × 12 × 8.0 × Sin 36.9° =
115.3 kgm²/s
(B) The magnitude of the rate of angular change in momentum is given by
dL /dt = d(mvrSinθ)/dt = mgrSinθ = 2.00 × 9.8 × 8.0× Sin36.9 = 94.1kgm²/s²
Answer:
μk = 0.26885
Explanation:
Conceptual analysis
We apply Newton's second law:
∑Fx = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
a= -0.9 m/s²,
g = 9.81 m/s² : acceleration due to gravity
W= 75 N : Block weight
W= m*g
m = W/g = 75/9.8= 7.65 kg : Block mass
Friction force : Ff
Ff= μk*N
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W-25 = 0
N = 75
+25
N= 100N
∑Fx = m*ax
20-Ff= m*ax
20-μk*100
= 7.65*(-0.90 )
20+7.65*(0.90) = μk*100
μk = ( 20+7.65*(0.90)) / (100)
μk = 0.26885
Answer:
v = 17.66 m/s
Explanation:
As we know that the lower end of the pole is fixed in the ground and it start rotating about that end
so here we can say that the gravitational potential energy of the pole will convert into rotational kinetic energy of the pole about its one end
so we have

so we have

now we have


now the speed of the other tip of the pole is given as


Answer:
b
Explanation:
Given:
- The ball is fired at a upward initial speed v_yi = 2*v
- The ball in first experiment was fired at upward initial speed v_yi = v
- The ball in first experiment was as at position behind cart = x_1
Find:
How far behind the cart will the ball land, compared to the distance in the original experiment?
Solution:
- Assuming the ball fired follows a projectile path. We will calculate the time it takes for the ball to reach maximum height y. Using first equation of motion:
v_yf = v_yi + a*t
Where, a = -9.81 m/s^2 acceleration due to gravity
v_y,f = 0 m/s max height for both cases:
For experiment 1 case:
0 = v - 9.81*t_1
t_1 = v / 9.81
For experiment 2 case:
0 = 2*v - 9.81*t_2
t_2 = 2*v / 9.81
The total time for the journey is twice that of t for both cases:
For experiment 1 case:
T_1 = 2*t_1
T_1 = 2*v / 9.81
For experiment 2 case:
T_2 = 2*t_2
T_2 = 4*v / 9.81
- Now use 2nd equation of motion in horizontal direction for both cases:
x = v_xi*T
For experiment 1 case:
x_1 = v_x1*T_1
x_1 = v_x1*2*v / 9.81
For experiment 2 case:
x_2 = v_x2*T_2
x_2 = v_x2*4*v / 9.81
- Now the x component of the velocity for each case depends on the horizontal speed of the cart just before launching the ball. Using conservation of momentum we see that both v_x2 = v_x1 after launch. Since the masses of both ball and cart remains the same.
- Hence; take ratio of two distances x_1 and x_2:
x_2 / x_2 = v_x2*4*v / 9.81 * 9.81 / v_x1*2*v
Simplify:
x_1 / x_2 = 2
- Hence, the amount of distance traveled behind the cart in experiment 2 would be twice that of that in experiment 1.
Answer:
The upstroke of the piston draws water, through a valve, into the lower part of the cylinder. On the downstroke, water passes through valves set in the piston into the upper part of the cylinder. On the next upstroke, water is discharged from the upper part of the cylinder via a spout.
Explanation: