Answer:
The tomato won't hit the car
Explanation:
According to the statement, the car moves at constant speed behind the truck fully loaded with tomatoes, and in the same direction. When a tomato falls from the top of the truck, it should not hit the car as the tomato falls due to the force of gravity, while horizontally has the same speed and in the same direction as the truck. So we assume that the tomato will fall to the road without touching the car.
Have a nice day!
<span>The shortening velocity refers to the speed of the contraction from the muscle shortening while lifting a load. Maximal shortening velocity is only attained with a minimal load. With a light load, the shortening velocity is at its Maximal shortening velocity. When the weight is heavy, the speed in which the muscle lifts the weight decreases in speed at a slower velocity.</span>
Answer:
the reflected wave is inverted and the transmitted wave is up
Explanation:
To answer this question we must analyze the physical phenomenon, with an wave reaching a discontinuity, we can analyze it as a shock.
Let's start when the discontinuity is with a fixed, very heavy and rigid obstacle, in this case the reflected wave is inverted, since the contact point cannot move
In the event that it collides with an object that can move, the reflected wave is not inverted, this is because the point can rise, they form a maximum at this point.
In the proposed case the shock is when the thickness changes, in this case we have the above phenomena, a part of the wave is reflected by being inverted and a part of the wave is transmitted without inverting.
The amplitude sum of the amplitudes of the two waves is proportional to the lanería that is distributed between them.
When checking the answers the correct one is the reflected wave is inverted and the transmitted wave is up
Answer:
You didn't give the information needed for the answer bud
Explanation:
This topic is actually quite controversial, but the answer in this case would be C.
Just some food for thought, the 2nd law of thermodynamics entropy of the universe is always increasing, but that doesn't necessarily mean that earth's entropy has to. As long as the net change in entropy of the universe is increasing it doesn't matter if one planet is decreasing a nominal amount. Next, Earth as said is not a closed system and you could argue that the sunlight and energy from the sun is increasing the total energy within the system that is earth meaning that it is increasing in entropy. Next, if you consider increasing entropy as an increase in the number of possible permutations that the universe or parts of the universe can take, then it is completely possible that an ordered planet and life is possible, although rare. This theory explains why there are so many life forms and why entropy is actually increasing when divergent evolution occurs.