Answer
Assuming
east is the positive x direction
north is the positive y direction
initial velocity , u = 19 j m/s
a)
acceleration , a = 1.6 j m/s^2
Using first equation of motion
v = u + a × t
v = 19 + 5.6× 1.6
v = 28 j m/s
the velocity of the car after 5.6 s is 28 m/s north
b)
acceleration , a = -1.5 j m/s^2
Using first equation of motion
v = u + a × t
v = 19 - 5.6 ×1.5
v = 10.6 j m/s
the velocity of the car after 5.6 s is 10.6 m/s north
During its lifepsan, the sun's core would keep contracting and heating up.
The temperature will keep increasing to the point where the temperature outside the core will get to hydrogen fusion temperatures.
The sun will grow in surface and eventually became the Red Giant
From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as

Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
Answer: velocity
Explanation: it's the rate of change of the objects position/ consistent change